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Reversible combinatorial computers are built from basic cells with a three-bit 
digital input and a three-bit digital output. Such a computer can calculate both 
'from left to right' and 'from fight to left', such that input pins and output pins 
are indistinguishable. In order to perform a calculation in a specific direction, an 
electric field should be applied externally. The inevitably frictional losses occur 
in the lines supplying the computer with the input data and in the lines draining 
the calculation results to the output registers. Such behavior is analogous to the 
endoreversible operation of heat engines and other energy converters. 

1. I N T R O D U C T I O N  

There exists a vast literature on the physics o f  computing.  For review, 
see, e.g., Mead and Conway  (1980) and Bennett  and Landauer  (1985). In 
this context, the need for a comparison between a computer  and a Carnot  
heat engine has been mentioned several times (Maddox,  1987; Costa de 
Beauregard, 1989; Jablonski, 1990). However,  we still lack a formal and 
rigorous theory of  reversible computation (Wolpert, 1992). True, there exists 
a useful literature on logically reversible and irreversible gates (Bennett and 
Landauer, 1985; Fredkin and Toffoli, 1982). But the relationship between 
logical and physical  reversibility is still not clear. In the present paper, a 
theoretical f ramework is presented in order to find a relationship between 
logical operations and physical  quantities in a combinatorial  computer. The 
tool which is proposed for this goal is endoreversible thermodynamics.  

The general endoreversible engine consists o f  four reservoirs. The tem- 
perature T of  each o f  them is constant, and so are their intensive quantities 
X, Y, . . . .  Each reservoir can supply an energy current U as well as extensive 
quantity currents x, y, . . . .  where each current x is associated with the corres- 
ponding parameter X, in such a way  that the product  x X  is a work current. 

l Vakgroep Elektronika en Informatiesystemen, Universiteit Gent, B-9000 Gent, Belgium. 

2251 
0020-7748/95/1100-2251507.50/0 �9 1995 Plenum Publishing Corporation 



2252 De Vos 

The reservoirs 1 and 2 are the external reservoirs, whereas the reservoirs 3 
and 4 are the internal or intermediate reservoirs. (See Fig. la.) 

Between reservoir 1 and reservoir 3 is a conductor, between reservoir 
3 and reservoir 4 is a reversible engine, and between reservoir 4 and reservoir 
2 is a second conductor. The fact that the inner engine is reversible means 
that it satisfies the following two axioms: 

Axiom I. Conservation of energy: 

U 1 - U z = W  

Axiom 2. Conservation of entropy: 

S 1 - S2 ~--~- 0 

where W denotes the produced power, i.e., work per unit time, and S is the 
entropy current associated with the energy current U and the currents x, y , . . .  : 

U -  (xX + yY + . . . )  
S =  

T 

The subscript 1 (in U~ and $1) refers to currents supplied to the reversible 
core, whereas subscript 2 (in U2 and $2) refers to currents supplied by it (see 

#1 #3 #4 #2 

@ T 1 T3 U1 U2 T4 g2 1"2 

@ vl 1 v4 % v2 

@ q ~ ~  1'J1 12 J' 2 q~4,~, 4 ~P2,Z,2 

Fig. 1. Endoreversible engines: (a) general engine, (b) thermal engine, (c) chemical engine, 
(d) photovoltalc engine, (e) electrical network, (f) computational engine. 
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Figs. lb to If). The condition $1 - $2 = 0 expresses that no entropy is 
generated in the engine itself. This explains the name endoreversible: revers- 
ible in its internal parts (Rubin, 1979). Thus all entropy generation takes 
place in the two conductors, i.e., in the communication between the engine 
and the external world, the latter represented by reservoirs 1 and 2. 

Figures lb and lc show two simple examples of endoreversible engines: 
the endoreversible thermal engine, due to Curzon and Ahlborn (1975), and 
the endoreversible chemical reactor, due to De Vos (1991a). In the former 
case, we have the following components: 

�9 The reservoirs are heat reservoirs, i.e., reservoirs only labeled by 
their temperature T and providing only a heat current U. 

�9 The conductors are assumed to obey simple Fourier-Newton trans- 
port equations: 

gl  ---~ gl(Tl -- T3) 

U 2 = g2(T4 -- T2) 

where the coefficients gt and g2 are thermal conductances. 
�9 The reversible engine is an ideal Carnot engine. 

In the latter case, we have the following components: 

�9 The reservoirs are particle reservoirs, i.e., reservoirs only labeled by 
their chemical potential Ix and providing only a particle current N. 

�9 The conductors are assumed to obey simple Fick laws: 

e IX3 

h IX4 

where the coefficients hi and h2 contain both diffusion coefficients 
and geometrical factors. 

�9 The reversible engine is an ideal fuel cell. 

Figure ld shows a less simple example: the endoreversible photovoltaic 
engine (De Vos, 1991b). Here reservoirs need at least two labels: temperature 
T and chemical potential ix. Between reservoirs, two extensive quantities are 
exchanged, i.e., energy U and particles N. The transport rates are governed 
by laws of the form 

U1 = gl(Tb IXO -- gl(T3, 1*3) 

U2 = g2(T4, ~J"4)  - -  g2(T2, IX2) 
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N1 = hi(T1, ~1) - -  hi(T3, ~3) 

N2 = h2 (T4 ,  1-1~4) - h 2 ( T 2 ,  P~2) 

where gb g2, hb and h2 are some mathematical functions: linear, exponential, 
or whatsoever. 

Endoreversible models have proven their value, not only for thermal 
engines and chemical reactors, but also for describing solar energy conversion, 
climatology, economics, etc. A survey can be found in Sieniutycz and Salamon 
(1990) and De Vos (1992, 1993, 1995a). 

2. ENDOREVERSIBLE LOGIC GATES 

In order to relate computational gates to endoreversible engines, we 
start by introducing an electric engine. The electric network simply consists 
of two (ideal) voltage sources V1 and V2, two (Ohmic) conductances gl and g2, 
and one (rechargeable) battery A (see Fig. 2a). Its endoreversible schematics is 
given in Fig. le. The electric currents I~ and lz, as a function of the battery 
voltage A, are depicted in Fig. 2b. Finally, the power W stored by unit of 
time into the battery is displayed in Fig. 2c. According to the classical scheme 
of endoreversible thermodynamics, we distinguish three special values of the 
parameter A: 

�9 For A = 0, we have a short-circuit current g(V1 - V2), where g is 
short-hand notation for g l g z / ( g l  + g2). 

�9 For A = �89 - Vz), we have maximum power transfer Wm~ = 
" g ( v l  - v 9  2. 

�9 For A = V1 - V2, we have open circuit, i.e., Ii = Iz = O. 

Now suppose we have dual power supplies --+qh and ___qo z (both q~ and 
q~2 denoting positive voltage levels). We have two one-bit registers: A and 
P. This means that register A is at voltage 1/1, equaling either +q~ or -qh ,  
and that register P is at 112, equal either to +q~z or -q~2- We assume that a 
negative voltage is a logic zero and a positive voltage is a logic one. The 
logic state of register A is denoted hi; the logic state of register P is denoted 
h2- Between the two registers is a logic gate. As an introductory example 
we chose the simplest gate imaginable, i.e., the follower. Table Ia displays 
its truth table. A truth table tells how a logic operator ~ operates on a logic 
variable: we write f~(hl) = h2. In the case of the follower, we have ~(0) = 
0 and f~(1) = 1. 

The physical implementation of P following A consists of an ideal (i.e., 
lossless) switch $3 and two ideal batteries. If V3 is positive, then the switch 
is up; if V3 is negative, the switch is down. In order to make the follower 
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Fig. 2. Endoreversible electrical engine: (a) electrical network layout, (b) current-voltage 
characteristic, (c) work-voltage characteristic. 

Table I. Truth Table of the Two Studied Gates 

(a) (b) 

A P A B C P Q R 

0 0 0 0 0 0 
0 0 1 1 1 0 
0 1 0 1 0 1 
0 1 1 1 0 0 
1 0 0 0 1 1 
1 0 1 0 1 0 
1 1 0 0 0 1 
1 1 1 1 1 1 
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v 1 

Fig. 3. Implementation of the one-bit follower. 

~__~__, ~ _ ~ s 3  ~__. 
..... v 3 / ~ - ~ i - - ~  ~v, ..... '~ 
vvv~  w ,Tv  = - V 2 

physical ly reversible,  also a switch $4 and two batteries are added to make  
A fol low P. Switch $4 is up if vol tage V4 is positive; it is down if V4 is 
negative. (See Fig. 3.) Note that again we have two lossy components ,  i.e., 
the finite electric conductances gl and g2. 

We first consider a case where the logic equation 1)(hi) = h2 is fulfilled, 
i.e., A = P = 1. Then, it is clear that the electric currents la = 12 = g ( V 1  - 

V2 -- A) equal g(qh - q~2 - A). (See Fig. 4.) 
We show in Fig. 5 the vol tage profile along the wire f rom A to P, in 

four different cases: 

�9 A = 0 a n d P =  0 
�9 A = 0 a n d P =  1 
�9 A = 1 a n d P  = 0 
�9 A = 1 a n d P =  1 

and two different subcases 

�9 A < q ~  1 - -  ~0 2 
�9 A > q~l - -  q02 

\ 
I ,J  

j 

Fig. 4. Endoreversible behavior of the one-bit follower, for the case A = P = 1. 
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Fig. 5. Voltage profile in the one-bit follower. 

Always the current is of the form g(~q01 -4- q)2 -4- A) .  

We have until now considered registers as voltage and information 
sources. If the voltage is negative, a logic 0 is 'sent'; if the voltage is positive, 
a logic 1 is 'emitted'. Now we look at a register as a 'receiver'  of  logic 
information: if a negative current enters the register, a logic 0 is 'read'; if a 
positive current enters the register, a logic 1 is 'received'. Thus, in our circuit, 
register A reads the content of register P by measuring the current -I1,  
whereas register P measures the current/2 in order to probe the logic content 
of A. 

It is clear from the voltage gradients in Fig. 5 that: 

�9 For m ~ q)l - -  q~2, register P receives correct information about the 
content of A whenever l~(hl) = h2 is fulfilled (see Figs. 5Aa and 5Ad). 
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�9 For A ~> q~l - -  qD2, register A receives correct information about the 
content of P whenever lq(ht) = h2 is fulfilled (see Figs. 5Ba and 5Bd). 

In other words: 

�9 For A < qh - q~z, information flows from A to P. 
�9 For A > q~l - q%, information flows from P to A. 

This is visualized in Fig. 4, where a positive J denotes information flow from 
A to P and negative J denotes information flow from P to A. Note that, for 
A = q~ - q~2, no information is transported. 

We see in Fig. 4 that the point A = q01 - q~2 is the reversible point: 
both the electric current I (short-hand notation for It = I2) and the information 
current J are zero. In Fig. 4, the curve J(A) is not continuous. This is caused 
by the fact that we assume noiseless channels (Shannon, 1948). In Appendix 
A we give an example of the behavior of noisy channels. 

Thus a logic gate, functioning between two registers A and P with given 
content, operates reversibly if and only if it fulfills two conditions: 

�9 Its batteries are tuned to A = q01 - q%. 
�9 Its truth table is satisfied. 

These two conditions can be written in the same form: 

( - A  + q~x) - q~2 = 0 

•(hl) -- h2 = 0 

Note that in the second line the 'minus sign' between the two logic variables 
stands for the XOR operator (exclusive OR). 

We can conclude that the continuous variable A and the discrete variable 
of  the logic gate play the same role as the two continuous variables/ '3 - 

T4 and IZ3 - ~4 of the photovoltaic converter. The continuous variable q~ and 
the discrete variable h of  the 'data reservoirs'  of  the computer (Fig. lf) play 
the same role as the continuous labels T and Ix of  the photovoltaic reservoirs 
(Fig. ld). Compared to the general endoreversible engine (Fig. la), we may 
say that the role of  the intensive variables X and Y is played by q~ and k, 
whereas the role of  the corresponding extensive variables x and y is played 
by the electric current I and the information stream J. See Fig. lf. 

However, in practice, there is a significant difference in approach 
between the computational engine and the photovoltaic engine. Indeed, in 
the case of  a photovoltaic engine, often the external properties are fixed. For 
example, in a solar energy converter TI and Iz~ are related to the properties 
of  the sun (e.g., Tl = 6000 K and I~1 = 0), whereas T2 and IZ2 are related 
to the earthly environment (e.g., T2 = 300 K and t~2 = 0). By changing the 
converter parameters T3 - T4 and ~3 - 1~4 we influence the conversion 
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properties (e.g., the conversion efficiency). In the case of a calculator, usually 
the internal parameters A and II  are fixed by the hardware. The external 
properties, i.e., the binary inputs hi = (A, B, C . . . .  ) and k2 = (P, Q, R, 
. . . ) ,  on the contrary, change frequently. Therefore we will assume A and 
l-I constant. 

We will, e.g., choose A = 0 and f l  given by the truth table of Table lb. 
Why exactly this example? Because this logic gate with three inputs and 
three outputs plays a fundamental role as a basic building block for reversible 
Boolean computers. In Appendix B we demonstrate how it fulfills this role. 

The reader will easily verify that all conclusions for the one-bit follower 
are equally valid for this three-bit reversible gate, and therefore for any 
reversible combinatorial network. One has only to generalize the meaning 
of the minus sign in the reversibility condition f l (k0  - k2 = 0. It now, e.g., 
stands for the Hamming distance, i.e., the number of ones in the logic variable 
(A XOR P, B XOR Q, C XOR R . . . .  ). 

For sake of completeness, we remark that applying higher voltage sources 
at one side and lower (or zero) voltage sources at the other side of a logic 
network in order to measure output currents at the second side is not the 
usual way to perform electronic computing. The common practice is to apply 
voltage sources at the 'input' side and measure open-circuit voltages at the 
'output' side. If we have described above a computer where output currents 
are measured, it is with the only purpose to illustrate better the analogy with 
the endoreversible heat engines. 

Finally, we remark that in the above description we used linear (i.e., 
Ohmic) series resistances. In practice, the lossy components in series with 
the ideal switches are formed by the finite conductances of the MOS channels. 
These, of course, behave far from linearly. However, this fact does not 
influence the basic results of our endoreversible picture. 

3. CONCLUSION 

In the present paper we have discussed logically reversible gates. We 
have made a rational choice for a basic building block. We have modeled 
this building unit in the same way as an endoreversible heat engine. 

We have demonstrated how the endoreversible computer works. In 
reversible conditions it dissipates no heat, bu~ is useless, as it works at the 
edge of forward and backward operation. The computer hesitates between 
calculating in forward and in backward direction. This is completely similar 
to a reversible heat engine: in reversible conditions, the efficiency of a Carnot 
engine is maximal (i.e., equal to the Carnot efficiency), but this operation is 
useless, as the conversion of heat into work happens infinitely slowly: the 
engine hesitates between operation as heat engine and operation as heat pump. 
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In order to perform a really complete calculation (i.e., to take data in, 
to process the data, and to take resulting data out), it is necessary to operate 
the computer out of physical equilibrium, by introducing an external force, 
e.g., an electric field. Then necessarily some electrochemical energy is con- 
verted into heat in the bit conductors. In this endoreversible scheme, no 
energy is dissipated in the gates themselves of the combinatorial circuit: 
energy is only dissipated in the connections between registers and gates 
and in the interconnections between the various gates. These results are in 
agreement with the points of view developed by Feynman (1985). 

APPENDIX A. CHANNELS W I T H  NOISE 

Noise introduces errors, such that, on the average, only a fraction ct of 
the bits emitted by one reservoir is received correctly by a second reservoir. 
Note that 0 < ct <- 1. We assume the voltage level q~i larger than the voltage 
level q~j, i.e. the situation where information transmission from i to j is aimed 
at (see Fig. 6a). What is then the rate J of transmission of information? 
Following Shannon (1948), who describes the special case ct = 99/100, 
we write 

J = n ( i )  - H j ( i )  (A1) 

where H(i )  is the entropy of the message sent by reservoir i, whereas Hi( i )  
is the conditional entropy. Let Po and Pl = 1 - P0 be the probabilities of 
register i emitting a 0 (V,- = -~oi) and a 1 (Vi = +q~i), respectively. If  we 
assume P0 and PI equal to 1/2, then 

H(i)  = - P o  log(po) - Pl log(pl) 

= log(2) 

= 1 bit (A2) 

and 

~.(i) = -~P0 log[ctp ~ 

-otpl log[txp a 

] OLp0 
J - (1 - ot)po 

+ 0 ---  )pl 

] - (1 - oOpl ~pl 

+ (i ---  )p0 

= - ~  log(ix) - (1 - oOlog(1 - or) 

We first consider the case where the two logic variables are equal: k,- 
= k:. Then the voltage difference V~ - V 2 between the two terminals can be 
equal to one of the following two values: either -q~i + q~j or r - %. 

log[( 1 (_l_-e)po ] 
- eOpo + eLplJ 

log[(  1 (1 - ~)Pl ] 
- c t )p l  + apoJ 

(A3) 
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If, e.g., V,- = q~i (i.e., Logic 1) and Vj = q~j (i.e., also logic 1), then the 
current I is supposed to be g(q~i  - q~j - A). Assuming, e.g., Bol tzmann 
statistics for crossing the energy barrier q abs(q~i - q~j - A), there is a finite 
probability for the current to f low in the 'wrong direction' ,  i.e., f rom low 
potential to high potential. The probability to have a correct current sign is 
thus lower than unity: 

1 
ot = (A4) 

1 + e x p [ - q  abs(q~i-  q~j - A ) / k T ]  

Note that this simple model leads to valuable results: for abs(q~i - q~j - A) 
> >  k T  transmission is reliable (ct ~ 1), whereas for  abs(q~i - q~j - A) < <  
k T  transmission is poor  (or ~ 1/2, such that the received bit is completely 
randomized).  Substitution of  (A4) into (A3) and subsequent substitution of  
(A2), (A3) into (A1) finally leads to a J curve as in Fig. 6b. This continuous 
curve replaces the discontinuous curve in Fig. 4, which is recovered in the 
limiting case of  T --4 0, 

g , ~  

vi i .,~;;;, I i  vj 

I 

| 

-i 

J/log (2) 

Fig. 6. Transmission rate of channel with noise. 

A 
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We now consider the case where hi - kj is not zero. Then the energy 
barrier is q abs(q~i + q~j - A) and thus 

1 

1 + e x p [ - q  abs(q~i + q~j - A)/kT] 

Since usually A = 0 and q~i + q0j is large compared to q~i - q~i, this second 
case is less prone to errors due to noise. 

APPENDIX B. TEN L I T T L E . . .  

It has been demonstrated by Fredkin and Toffoli (1982) that in order to 
build a reversible layout of  an arbitrary Boolean function, one needs gates 
with an equal number of  inputs and outputs, and that this number should at 
least be equal to three. Well, there ex i s t  (23) (23) = 88 = 16,777,216 different 
truth tables with a three-bit input k~ = (A, B, C) and a three-bit output k2 
= (P, Q, R). Among these, (23)! = 8! = 40,320 different tables are reversible 
truth tables. Table II shows four examples discussed in the literature: 

�9 The notorious Fredkin and Toffoli (1982) gate. 
�9 The gate that has been called the 'controlled controlled not' gate by 

Feynman (1985), but which Margolus (1988) calls the Toffoli gate. 
�9 The gate called the 'symmetric majority parity' gate by Margolus 

(1988). 
�9 The gate proposed by Peres (1985). 

For convenience, we will call these gates the Fredkin gate, the Feynman 
gate, the Margolus gate, and the Peres gate, respectively. It is not clear at 
first sight what makes these four cases special among the many possibilities. 

In order to make a rational choice among the 40,320 reversible gates 
with three inputs and three outputs, we first impose that the reverse gate 
should be identical to the gate itself. In other words: the gate should be its 
own reverse. This means the function A(P, Q, R) should be equal to the 
function P(A, B, C) and analogously for B and Q and for C and R. Such 
gates we will call symmetric gates. It has been shown elsewhere (De Vos, 
1994a) that there exist 764 different symmetric gates. It is clear from Table 
II that the Fredkin gate and the Feynman gate are symmetric, but the Margolus 
gate and the Peres gate are not. 

Next we require threefold rotational symmetry: internally A, B, and C 
should be indistinguishable and so should P, Q, and R. This means that the 
functions P(A, B, C), Q(B, C, A), and R(C, A, B) should be identical. Gates 
that have this threefold rotational symmetry we will call cyclic gates. Gates 
that have both the twofold mirror symmetry and the threefold rotational 
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symmetry,  i.e., which  are s imul taneous ly  symmetr ic  and cycl ic ,  we wil l  cal l  
cyc losymmet r i c  gates. The reader  can eas i ly  ver i fy  there are only  e ight  
different  cyc losymmet r i c  gates. None  o f  the gates o f  Table II  is a m e m b e r  

o f  this family.  
N o w  we int roduce a final  condi t ion:  the gate should be able  to operate  

without  p o w e r  supplies.  This means  the output  signals P, Q, and R should 
be deduced  exc lus ive ly  f rom the input  signals A, B, and C. No addi t ional  
power  inputs are a l lowed.  This  necessar i ly  means  that the first l ine o f  the 
truth table should  read 12(000) = 000 and the last l ine 12(111) = 111. Indeed,  
suppose  we have an electronic  compute r  where  A, B, and C are, e.g., at logic  
0, thus at negat ive  voltage.  I f  power  l ines are miss ing,  the gate is unable  to 
fabr icate  any posi t ive  vol tage  in order  to supply  a logic  one to ei ther  o f  the 
three outputs P, Q, and R. The  absence  of  p o w e r  busbars  and the subsequent  

conservat ion  o f  000 and 111 lowers  the number  o f  a l lowed gates f rom the 
eighth cyc losymmet r i c  ones to only four. The  remain ing  four truth tables  are 

d i sp layed  in Table III. One o f  them, i.e., Table I l ia ,  is tr ivial ,  as it  mere ly  
descr ibes  the three-bi t  fol lower,  where  P = A, Q, = B, and R = C. A n d  then 

there were  three. 
So, we f inal ly  have to make  a (rather arbi t rary)  choice  among the 

remain ing  Tables I I I b - I I I d .  We chose Table I l ld ,  as it  has such s imple  rules 
of  convers ion:  

�9 I f  A = B = C, then the outputs fo l low the inputs. 
�9 Otherwise  the outputs invert  the inputs. 

This  final  logic  gate was first  presented  in De  Vos (1994b) and its e lectronic  

implementa t ion  was descr ibed  in De Vos (1995b). We recal l  here that its 

Table II. Truth Table of Some Reversible Gates: (a) Fredkin Gate, (b) Feynman Gate, 
(c) Margolus Gate, (d) Peres Gate 

(a) (b) (c) (d) 

A B C P Q R A B C P Q R A B C P Q R A B C P Q R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 1 0 0 l 0 0 1 1 0 0 0 0 l 1 0 0 
0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 
0 1 1 0 1 1 0 1 1 0 1 l 0 1 1 1 1 0 0 1 1 0 1 1 
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 l 
1 0 1 1 0 1 1 0 1 1 0 1 1 0 l 0 1 1 1 0 1 1 0 1 
1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 l 1 1 0 l l 1 
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 l 1 1 1 0 1 0 



0 r~
 

0 

0 

~
g

 

g~
 

gB
. ~~

 
~

-~
 

| 
|
 

-
-

0
~

0
0

~
-

-
0

 

c~
 

~
r
 

c~
 

~
r
 

o 

tD
 



Reversible and Endoreversible Computing 2265 

following properties are important for implementing arbitrary Boolean 
functions: 

�9 If one input is preset to logic zero, one output gives a logic OR 
function; e.g., if C = 0, then R = A OR B. 

�9 If one input is preset to logic one, one output gives a logic AND 
function; e.g., if C = 1, then R = A AND B. 

�9 If one input is preset to logic 0 and another one to logic 1, one output 
gives a logic NOT function; e.g., i fB = 0 and C = 1, then P = NOT A. 

It is well known that the OR, AND, and NOT functions are sufficient for 
building any Boolean function. Therefore our logic gate is a universal 
primitive. 

Its implementation for A = 0 is as follows. It consists of six 'generalized 
inverters' like Fig. 7a: 

�9 If the voltages Vb and Vc have the same sign, then both switches are 
closed, such that the logic output P of the inverter equals B and 
equals C. 

�9 If the voltages Vb and Vc have opposite sign, only one switch is 
closed, i.e., the one that realizes the logic inversion P = NOT A. 

Three such 'generalized inverters' together form a 'hexagon' realizing the 
implementation (P, Q, R) = fI(A, B, C). In order to realize the symmetric 
condition (A, B, C) = 12(P, Q, R), a second 'hexagon' is added to the first one 
head to tail, leading to the complete gate in Fig. 7b. Also an implementation for 
arbitrary A is possible. It is more complicated, as it contains not only additional 
batteries, but also additional switches. We will therefore not go into its details 
and limit ourselves to the zero-A case. 
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